随机变量(随机变量分为哪两类)
本文阅读简介:
- 1、随机变量
- 2、什么是随机变量
- 3、随机变量的解释
随机变量
1、随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
2、随机变量是表示随机现象各种结果的变量。例如某一时间内地铁站的人流数量,一台机器在一定时间内出现错误的次数等等,都是随机变量的实例。在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。
3、随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。[1]随机事件数量化的好处是可以用数学分析的方法来研究随机现象。
什么是随机变量
1、随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
2、随机变量是表示随机现象各种结果的变量。例如某一时间内地铁站的人流数量,一台机器在一定时间内出现错误的次数等等,都是随机变量的实例。在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。
3、如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
4、随机变量表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。
5、离散型随机变量:变量取值只能取离散型的自然数,就是离散型随机变量。
6、一个随机事件每一个可能的结果就是一个样本点 ,样本点的集合构成一个样本空间 S 那么x就是S--R的一个映射 把S里面的集合映成一个数,因为S是一个集合,所以实质上随见变量是一个集函数。
随机变量的解释
随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。[1]随机事件数量化的好处是可以用数学分析的方法来研究随机现象。
通俗地讲,随机变量就是一个随机的数,它是对任何的“随机的东西”做的量化。我相信你有能力解释什么是“随机”,所以主要解释“量化”的部分。
随机变量(random variable)表示随机试验各种结果的实值单值函数。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。
随机变量 random variable 表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。
如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。